The game theoretic p-Laplacian and semi-supervised learning with few labels
نویسنده
چکیده
We study the game theoretic p-Laplacian for semi-supervised learning on graphs, and show that it is well-posed in the limit of finite labeled data and infinite unlabeled data. In particular, we show that the continuum limit of graph-based semi-supervised learning with the game theoretic p-Laplacian is a weighted version of the continuous p-Laplace equation. Our proof uses the viscosity solution machinery and the maximum principle on a graph.
منابع مشابه
The Un-normalized Graph p-Laplacian based Semi-supervised Learning Method and Speech Recognition Problem
Speech recognition is the classical problem in pattern recognition research field. However, just a few graph based machine learning methods have been applied to this classical problem. In this paper, we propose the un-normalized graph p-Laplacian semi-supervised learning methods and these methods will be applied to the speech network constructed from the MFCC speech dataset to predict the label...
متن کاملNoise-Robust Semi-Supervised Learning by Large-Scale Sparse Coding
This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noiserobust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding prob...
متن کاملIterative Semi Supervised Data Denoising with Procrustes Analysis
A wireless sensor network localization with only few location aware nodes is difficult due to noisy medium and other environmental effects. This situation is similar to semi supervised learning where in the given data set, a small portion is labeled while majority remains unlabeled and the aim is to find unknown labels based on available information. This is achieved by exploiting the underlyin...
متن کاملUn-Normalized Graph P-Laplacian Semi- Supervised Learning Method Applied to Cancer Classification Problem
A successful classification of different tumor types is essential for successful treatment of cancer. However, most prior cancer classification methods are clinical-based and have inadequate diagnostic ability. Cancer classification using gene expression data is very important in cancer diagnosis and drug discovery. The introduction of DNA microarray techniques has made simultaneous monitoring ...
متن کاملGraph Transduction as a Non-cooperative Game
Graph transduction is a popular class of semi-supervised learning techniques, which aims to estimate a classification function defined over a graph of labeled and unlabeled data points. The general idea is to propagate the provided label information to unlabeled nodes in a consistent way. In contrast to the traditional view, in which the process of label propagation is defined as a graph Laplac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.10144 شماره
صفحات -
تاریخ انتشار 2017